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Abstract

In this work, we develop a tool to record and replay block device operations. The
tool serves as a proof of concept and basis for further research in the area of file system
consistency. The tool saves a time series of device operations and allows for restoration
of the disk state at any point in time. To do this, a virtual block device is provisioned
which records the performed operations. During replay, the recorded operations are
played back up to a specified point in time, allowing researchers to inspect the file
system consistency in specific states. As a side effect, this recording also serves as a
interchange format of file system traces which can be utilized to further specify bug
reports.

Afterwards, a framework for automated analysis of existing file system implemen-
tations is presented. This framework is then used to perform simple tests against the
xfs, ext4, btrfs, fat and ntfs file systems.
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1 Introduction

Files are the basic storage unit on modern
systems. They are organized using file sys-
tems which in turn manage the layout of
records and directory structures on physi-
cal devices. File systems are usually looked
at from a performance and memory effi-
ciency standpoint which shows stark differ-
ences between popular formats. This work
however approaches file systems from a re-
liablity perspective.

When deciding which file system to use
for a system, its behaviour in certain failure
states is often a critical factor. A corrupted
file system can break the system entirely or,
even worse, introduce inconsistencies during
seemingly normal operations.

Power loss or physical disconnects hap-
pen from time to time (either from natural
causes like power outages or mistakes) and
especially in critical environments, data loss
is not an option. A lot of research in this
research area is done to provide safeguards
(Gunawi et al. 2007) or develop new file
systems (Bonwick et al. 2003). However, as
already shown by Recon (Fryer et al. 2012),
these conceptual improvements only work as
long as the implementation is correct.

For large scale distributed systems, cor-
ruption of a single file system is not critical
as they are built with redundancy in mind at
a higher level. The focus of our research is in
providing help in the development process
and continously analyze existing implemen-
tations for errors. Since server workloads
are mostly virtualized and rely on complex
distributed file systems, we focus on desktop
user workloads.

Analyzing file system consistency of spe-
cific implementations is a very involved pro-
cess, often requiring physical activity to dis-
connect power, reboot machines or to con-
figure hardware. As such, it is hard to
run experiments rapidly and reproducable
across multiple filesystems. It is also im-
mensly difficult to time the operations.

We present a system called Sitelen which
aims to aid researchers by allowing the
recording and following replay of block de-
vice operations. This way, arbitrary data
can be written to the file system and in-
spected in retrospect. By relying on replay
after the data has already been writen, Site-
len offers a more ergonomic approach which
does not rely on catching the exact call to in-
terrupt. Another big advantage is the abil-
ity to run the same consistency checks at
any point in time.

By jumping to a specific state, a discon-
nect of the underlying block device is sim-
ulated, without having to perform hard to
time actions during runtime. Since the in-
formation written to the disk is the only
persistent information the file system stores,
our tooling can also be used to find bugs not
related to hardware failure/disconnects. If
the filesystem writes corrupted information,
the exact steps which lead to this can be re-
played at will. By cropping specific writes
from the log, a minimal set of writes can be
used in bug reports.

1.1 File Systems

File systems offer a standardized way to
write and retrieve files. The prevalent type
of file system is called hierarchial as they
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structure their contents using directories
containing files. Hierarchical file systems
are far from the only type of file system
available (Seltzer and Murphy 2009). They
are however the most common ones.

The Portable Operating System Interface
(POSIX) represents a common denominator
across file systems. It describes the infor-
mation to be stored for each file and stan-
dardized interfaces to access them. Without
this interface, each file system would have to
provide their own set of rules and methods
which complicates portability across plat-
forms.

1.1.1 File System Implementation
Types

To realise the goals of file systems, a multi-
tude of options is availalble to the devel-
opers. While early file systems relied on
management utilities like fsck, the amount
of data soon became too overwhelming for
these tools to continue to be a viable option
from a performance perspective. Nonethe-
less, modern file system still ship with sup-
port tooling to repair a file system af-
ter a crash. For example: xfs provides
xfs_repair and btrfs uses a command with
the same name to check and repair the file
system. The file systems in question are
structured around the idea that consistency
is implicit and does not have to be verified
or repaired on each mount.

On top of their structure, file systems also
offer some other features as unique selling
points. Many file systems offer transparent
encryption or compression while others op-
timize for amount of writes performed. The
reason why minimizing write operations is a

goal for some file systems is to increase the
longlivety of flash devices which only offer
a limited amount of write cycles. During
creation, the parameters of a file system are
also configurable. Most commonly this in-
cludes options like sector size, compression
level or tuning information for specific hard-
ware setups.

Bornholt et al. split the most prevalent
structural approaches into the following four
categories: journaling, log-structured, copy-
on-write as well as soft updates. The differ-
ent aproaches are described more in depth
below.

1. Journaling

The idea of journaling is keeping a
write-ahead-log on disk to describe the
operations about to be performed. This
information is kept in the journal and
allows the file system to know if a
crash occured and if it can recover it-
self. Most of the time, the journal is
kept on the same device as the rest of
the files. However, many journaling file
systems also support the option of stor-
ing the journal on a separate device.
This introduces an additional layer of
complexity but increases the failure tol-
erance.

Popular examples include: ext4, ntfs
as well as xfs.

2. log-structured

These file systems operate on the prin-
ciple that the entire disk is a large, se-
quential log (Rosenblum and Ouster-
hout 1992). The log also contains in-
dexing information to speed up opera-
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tions and recovery. This type of file sys-
tem can be seen as an early precursor
to the copy-on-write file systems out-
lined below. Rosenblum and Ouster-
hout also provide an implementation
for a log-structured file system called
Sprite LFS.

Usually these kinds of file systems also
include a checkpoint mechanism which
records states in which the disk is con-
sistent. This information can then be
used to discard non-consistent data on
recovery.

A popular log structured file system in
use today is F2FS (Lee et al. 2015). It
was developed by Lee et al. for Sam-
sung Electronics with the goal of opti-
mizing for flash storage. Another un-
usual feature of F2FS is the option to
treat file formats differently. The file
system allows for different treatment of
hot and cold files. This information is
used for performance fine-tuning.

3. Copy-on-write

COW file systems operate similar to
log-structured ones but do not strictly
rely on a log to keep information about
entries. Rodeh, Bacik, and Mason
specify BTRFS (pronounced better FS
or sometimes butter FS ), a file system
which is now adopted as the default file
system for some popular linux distribu-
tions.

It works by writing data to fresh lo-
cations and redirecting the location in-
formation to these new blocks. This
allows for easy snapshot operations in
which the old superblock is protected

from being overwritten. Another pop-
ular file system using this aproach is
ZFS (Bonwick et al. 2003) which is
mainly used in BSD installations but
now also has its own linux implementa-
tion (Ahrens 2014).

4. soft-updates

Soft update file systems work by or-
dering the operations so that each op-
eration by its own does not result in
an inconsistent file system. On mount-
ing the file system after a crash, the
dependency graph of operations is in-
spected, rolled-back and then rolled-
forward. This implies a form of jour-
nal in some capacity which is why this
aproach is sometimes reffered to as
JournalLite (McKusick and Roberson
2010).

Currently, only the BSD family of op-
erating systems ships with support for
soft-update file systems. As our imple-
mentation focuses on Linux, we did not
analyze the behaviour of soft updates in
this work.

1.2 Linux Storage Architecture

To figure out where to inject our code, we
must first discuss the Linux Storage Archi-
tecture. The Linux storage architecture can
be split up in separate layers as seen in fig-
ure ??.

Applications use a set of user space APIs
to write to files. In the case of linux these
APIs are based on the POSIX standard.
However, each file system has its own way
of accessing contents. Having the operating
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Figure 1: Linux Storage Architecture

system implement every file system directly,
would thus result in a bottleneck. Instead,
the linux developers introduced another ab-
straction layer called VFS. This also allows
the kernel to mount multiple different file
systems into the same directory tree. The
VFS also serves as point of reference for Di-
rectory, inode and Page Caches, allowing for
better end-user performance across file sys-
tems (Kroeger and Long 2001).

Below the VFS, the Block Layer handles
ordering and queueing of so called requests.
If an operation needs to access multiple lo-
cations in storage, the block layer splits this
up into multiple requests to contigous re-
gions. The requests are then put into the
dispatch queue from which the next layer
picks up the requests. This is also the layer
on which concurrent access gets ordered into
sequential requests.

At the lowest level we find the Block De-
vice Drivers. The drivers receive requests
from the block layer via the aformentioned

dispatch queue. The requests are taken
from the queue and written to the block de-
vice. Since persistence is only available at
this point, the block device layer is a sen-
sible entrypoint for our tool to record the
written data. Other than responding to re-
quests, the block device driver also offers
information about the hardware device it-
self. This includes capacity, flags and phys-
ical block size. The information can then be
used to optimize performance for this spe-
cific physical device.

For our implementation, the only flag set
is QUEUE_FLAG_NONROT which tells the block
layer that this disk is not a rotational device.
The block layer can then infer that no per-
formance can be gained by allocating data
physically close together.

1.3 Previous work

Replaying of block device traces is not a new
concept. Tools like blktrace(Axboe et al.,
n.d.) and blkreplay(Schöbel-Theuer 2016)
exist to load test file systems and simulate
real workloads captured beforehand. One
noteable difference is the amount of data
recorded during tracing. The beforemen-
tioned tooling only records the time and
amount of data written but not the specific
data. They are not meant to split up the
traces or travel to a specific point.

On a higher conceptual level, there ex-
ists r2(Guo et al. 2008) which uses a differ-
ent architecture. Instead of recording writes
as they happen to a live kernel, they pro-
vide their own application-level kernel with
custom system calls. This however requires
library injection or other modifications to
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the existing code which could in turn pro-
duce unintended side effects or even intro-
duce bugs on its own.

In their paper, Bornholt et al. describe
how to model and analyze different consis-
tency models. This allows for a detailed de-
scription of consistency guarantees in the
case of a crash and a tool called Ferrite
which checks these models.

2 Approach

Due to Linux’ prevailing market share, ex-
celent documentation and filesystem avail-
ability, Sitelen is developed to work with the
Linux storage architecture. Implementation
of the system for other platforms such as
BSD, NT or Plan9 is out of scope but there
are no inherent properties of this approach
which would prevent the implementation on
these architectures.

Our system is split in two parts:

• A kernel module simulating a block de-
vice

• A userspace program storing and ana-
lyzing the writes passed by the kernel
module

This way, a clear seperation of concerns
can be made and the underlying kernel mod-
ule could theoretically be replaced by equiv-
alencies on other platforms. A diagram of
the archictecture can be found in Figure ??.
When playing back the recorded writes, the
flow of data is reversed (Figure ??).

Userspace

writes traces

Kernel Space

sitelen.ko

/dev/sit1

writes data

sitelen
(go program)

backs block device

Test Data
Generator

Userspace

logs to
log.wal

Figure 2: Sitelen Recording Architecture

Userspace

writes data

Kernel Space

sitelen.ko

/dev/sit1

verifies state

sitelen
(go program)

backs block device

Test Data
Generator

Userspace

reads from
log.wal

Figure 3: Sitelen Replay Architecture
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2.1 Communication Protocol

To keep the overhead to a minimum, a sim-
plified TLV (Type-Length-Value) encoding
is used. The format is used for all communi-
cations between the kernel module and the
userspace agent. The first 4 Bytes contain
the length of the record written while the
next 8 Bytes contain the sector index. Af-
ter these twelve bytes of metadata, follow
exactly len bytes of raw sector data. This
approach optimizes throughput while still
being easy to implement. If we only have a
single data pipe available, a more complex
protocol would be required as the packets
could be intertwined when a process switch
to another CPU is made. However, the way
we implemented the data transfer, no such
state is possible.

3 Implementation

3.1 Kernel Module

As we do not need persistent storage longer
than the lifetime of the kernel module, an in
memory block device is the simplest way to
allow RW operations. First we looked into
implementing this from scratch as seemingly
there exist a lot of guides (Corbet, Rubini,
and Kroah-Hartman 2005). Sadly, most of
the guides are based on an outdated kernel
version. Beginning in 2002, the Linux block
device layer underwent a major rewrite to
allow for more flexible performance tuning
(Axboe, Bhattacharya, and Piggin 2002).
This meant that the information presented
in most guides still used the old architecture
and concepts. Fortunately the Linux Kernel
ships with an open source in-memory block

device driver called brd1. The open license
of the Linux kernel allows us to take the ex-
isting code and adapt it to our needs as long
as we keep our implementation open source.

The block layer submits information as
BIO (Block Device IO) structs. These con-
tain a set of Operations (read or write) to
the block device. Each of these Opera-
tions is performed in sequence which makes
them an ideal place to record the informa-
tion written by the file system.

Our tracing implementation is located in
the do_bvec function of the block device
driver. Here we already have access to the
data to be written as well as the target sec-
tor. This is also the place where the original
in memory block device driver performs the
memory copy to the datastructure.

3.2 Transfering data out of the

kernel

Before we look at the recording of informa-
tion, we have to figure out a way to store the
traces. It is considered bad practice to write
files directly from kernel space 2 because of
permissions and separation of concerns.

The kernel offers different facilities to in-
teract with userspace, each with its own ad-
vantages and drawbacks. For our usecase
relay (Wisniewski 2003) is the best option
as it allows for streaming of data without
having to keep it all in memory. This way,
the kernel module just needs to write to the
queue and an userspace agent can pick up

1Linux BRD Driver: https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/
linux.git/tree/drivers/block/brd.c

2https://kernelnewbies.org/FAQ/
WhyWritingFilesFromKernelIsBad
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the data and transform or store it.

Due to the fact that the relay is scoped
per CPU, our usperspace agent needs to lis-
ten on each file in a seperate thread. An-
other valid approach would be to run the
kernel module in a Virutal machine with
only one cpu available.

Using a tool like fio 3 we can benchmark
our implementation against the pure brd

driver. Since our module only modifies the
writing of data and sequential access or lo-
cality is not changed, we will perform a
randwrite benchmark for 60 seconds. In
the case of tracing and replaying informa-
tion, the metric of interest is the IO Opera-
tions per second (IOPS)

Blockdevice IOPS
brd 1307k
sitelen 553k
NVME-SSD 74.3k

These results show, that by simply ex-
tracting the data out of the kernel, the mod-
ule encounters a severe perfomance penalty.
It can be reasoned that this is because ev-
ery write performs two memory copy oper-
ations instead of one. The second operation
is caused by writing to the relay.

Even though the writes to the sitelen de-
vice were recorded to the same NVME-SSD,
it outperforms it by quite a lot. This is due
to buffering on the writing side. The IO Op-
eration completes when the data has been
written to the relay and is not affected by
the userspace agent.

3https://github.com/axboe/fio Version 3.26

3.3 Writing to the kernel mod-

ule

To replay the recorded information, we can
utilize the existing debugfs structure. We
create a new file called replay and provide
a custom file operations structure which in
turn replays the writes to the in-memory
data structure.

The protocol used to write to the replay

file is the same used during recording.
To benchmark the replay procedure, we
recorded a series of writes and replayed
them up to a certain point. The writes used
for this were repeated calls of mkfs.ext4 as
this consistently performs writes to all sec-
tors while keeping the written data easily
compressible.

To obtain detailed information, we used
hyperfine4 with five warmup runs. The ta-
ble below shows the results of these bench-
marks with n signifying the amount of re-
played writes.

n avg Duration [ms] sigma [ms]
100 1.8 0.2
500 9.6 0.5

1000 17.9 0.7
2000 31.0 1.0
5000 76.7 3.8
9000 133.8 2.5

4Hyperfine Project: https://github.com/
sharkdp/hyperfine
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As expected, the performance of replay-
ing files is linear and does not vary much
between runs. Sub-linear performance is not
possible as we need to perform the write op-
erations in order. This also means that it is
not possible to split the work onto multiple
cores as is the case during recording.

Performance could be increase by writ-
ing boilerplate contents to the file system
directly through tools like dd. Using this
method, removes the ability to replay a sub-
set of writes but offers performance on the
same level as shown in section ??.

4 Userspace

The userspace agent is used to record and
analyze the data transfered out of the kernel
module. As the kernel relay facility works
by channeling the data respective to the cur-
rent CPU core, the userspace agents needs
to run a separate routine for each CPU core.
The chosen programming language go uses
goroutines, a lightweight userspace thread
implementation to handle concurrency.

The agent listens on each CPU relay and
pushes information to a centralized logging
facility. In its simplest form, the logging fa-
cility writes to a file in the following format:

seq. id sector data hash
1 0 C9B3B57AF5BB42. . .

By storing the data seperately and only
referencing it by its hash, we optimize for
storage space. It also allows us to edit the
logfile without having to load the entire his-
tory into the editor.

As an example, formating the blockdevice
using mkfs.ext4 writes the same data to
399 sectors. With a sector size of 4096, this
way of storing data saves around 1 MB of
disk space.

Another big advantage of this method is
the reusal of data blocks across many traces.

4.1 Extensibility

The way the recording system is structured,
allows for extensibility in many directions.
The interface for a complete storage imple-
mentation can be seen below:

type Log interface {

Write(

sector uint64,

hash []byte

) (uint64, error)

Iterate(

limit uint64,

callback IteratorCallback

) error

}

type DataStore interface {

Get(h []byte) ([]byte, error)

Put(h []byte, data []byte) error

}

The DataStore is used for blob storage
while the Log structure keeps a sequential
log of events. Example extensions could
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include a database backend to share blobs
and events across multiple workstations or
a SQLite backend to have a self-contained
file instead of a directory and acompanying
log file.

5 Filesystem evaluations

Now that we have a way to trace operations,
we can perform preliminary analysis of pop-
ular file systems to show differnces in crash
handling. All the tests below were carried
out on a sitelen disk of size 16 Mebibyte.
The operations were replayed and partially
omited manually.

5.1 mkfs

The mkfs utility is used to format block de-
vices or partitions with a filesystem. Each
filesystem provides its own extension like
mkfs.xfs or mkfs.ext4. In this experiment
we used our tool to record the number of
writes to the block device during formating.
By further analyzing the written sectors,
we can detect any sectors written multiple
times. This could point to potential perfor-
mance increases since file system initializa-
tion should not require multiple writes to
the same disk location.

FS WR Operations Dupl. writes
ntfs 5356 0

xfs 1063 1

exfat 516 0

ext4 315 1

fat32 68 0

fat16 13 0

The results show, that the amount of du-
plicate writes is much lower than assumed.

Furthermore, the duplicate writes all occur
in sector 0 and at the end of formating which
could be caused by the file system acknowl-
edging the completion of formating. Many
file systems zeroed out the entire block de-
vice, which could be optimized by checking
the contents beforehand. The only advan-
tage of this would be reducing the amount
of write cycles for flash devices. Reasons for
this are laid out in section ??.

5.2 Partial Writes

This section contains information
about tests performed manually,
for the automated test results see
the Partial Write testcase instead.

The next test is performed by creating
file containing random data to the formated
file system. The 32Ki file is written using
the dd program reading from /dev/urandom

and writing to a regular file in the root of the
filesystem. To verify the contents of the file,
we note its md5sum. Afterwards, we replay
the recorded writes one by one and inspect
the intermediate states for file presence or
content. The file systems tested were fat16,
ext4 and btrfs as these file systems are
some of the most commonly used file sys-
tems. These file systems also represent dif-
ferent classes, with fat16 being a simple file
allocation table, ext4 providing journaling
support and btrfs offering Copy-On-Write.

All files were written using the fol-
lowing command: dd if=/dev/urandom

of=/mnt/file bs=4096 count=8. A block
size of 4096 bytes was used since this is the
sector size of the virtual block device. To
avoid state kept in memory, the recording
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was started before mounting the file system.

5.2.1 fat16

During mount and unmount, the fat16 file
system writes information to sector 0. This
information is irrelevant for file system con-
sistency and can be ommited. The data is
written in three separate steps. Depending
on the amount of writes replayed, this re-
sults in two different failure states:

1. Write the file metadata to the FAT

• Failure → The file is present but
empty

2. Write the data to the disk

• Failure → The file is present but
still empty (Data is recoverable by
recovery tools)

3. Write the amount of data written to the
FAT

• Success → The file is present and
valid

By reordering or omitting some writes, a
third failure state can be reached. If only
the final write succedes, the file is listed as
its expected size, but the contents are in-
valid.

5.2.2 ext4

An interresting observation made during
analysis of the ext4 traces is the creation of
the lost+found folder. This folder is not
created during formating but on the first
mount. This creation also causes a lot of
zero writes to sectors which have previously

been cleared during formating, which shows
a potential performance improvement.

Like with fat16, ext4 writes information
on mount and unmount which is does not
cause inconsistency if ommited. The initial
creation of the lost+found folder can also
be omited as it will be created on the next
mount.

By replaying the activity up to the point
of writing to the superblock, the filesys-
tem does not show any files. As the su-
perblock spans multiple sectors, a partial
write causes the mount syscall to fail with
the error Structure needs cleaning. Using
the fsck.ext4 utility, the mount will succed
but the file and its contents are gone.

The only way to induce a failure state
is by erasing data written previously while
leaving the journal and superblock unaf-
fected. This leads to the respective parts
of the file being empty. In a real environ-
ment, this can only occur when the hard
drive somehow loses specific write opera-
tions while allowing others to succeed.

5.2.3 btrfs

In contrast to the other file systems in-
spected, btrfs does not handle ommiting of
mount operations gracefully. When remov-
ing the writes happening during mount, the
file system becomes corroputed and is un-
able to be restored by using the check com-
mand. Granted, this is something which
will never realistically happen unless the de-
vice is silently dropping write operations.
Ommiting the unmount operations does
have no effect on the resulting file system.

By stopping the writes at specific lo-
cations it is possible to reach two failure
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states. The first one occurs when data
has been written, but no metadata updates
took place. In this case, the file system
will be empty as no reference to the file
can be found. If the metadata writes fin-
ish before all data has been written, read
operations on the file will fail with a gen-
eral Input/Output error instead of returning
garbage. Using the default btrfs-check

tool, the file system cannot be repaired.

6 Automated Analysis

As shown in the previous section, even a
manual analysis can yield some interrest-
ing insights into the different file systems
and their inner workings. However, the ac-
tions performed do not sufficently describe
every action taken by file systems in regular
operations. It does not take metadata up-
dates, overwriting, deleting or copying into
account.

More involved analysis is very time-
consuming and labour-intensive. This is
why we implemented a simple test harness
to automate the testing of file systems.

6.1 Test harness structure

Following the Unix principle of doing one
thing and doing it well, the decision was
made to implement the test harness as an
extra tool instead of extending the existing
go program to include testing capabilities.
The harness is written in bash and allows
for customization by providing scripts which
will be called at the appropriate points in
time.

To verify if file systems fulfill our expecta-

tions of consistency, we must first define the
concept of a consistent file system further.

6.1.1 Defining consistency

Current operating systems adhere to a set of
APIs defined by POSIX. A common misun-
derstanding is, that these calls are intended
to be atomic. POSIX only specifies atom-
icity when talking about FIFOs, pipes and
multiple threads in the same process. When
talking about file access across multiple pro-
cesses, the interfaces do not neccesarily have
to be atomic (Siebenmann 2020).

In the context of our work, this becomes
important as we now have to be more lax on
our definition of consinstency. We declare a
state consistent if the state is a logical con-
sequence of a sequence of write operations
which occured until the interruption. Tak-
ing a look at an example:

echo "content" > file1

sync

echo "updated" > file2

mv file2 file1

sync

Consistent states for this sequence of
events include:

• file1 does not exist

• file1 exists with the contents content

• file1 exists with the contents updated

The contents of file2 and whether it ex-
ists or not are not relevant to the consis-
tency. In the syntax chosen for the test-
cases, calls to sync constitute fixed points
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after which the program has succesfully
written information to disk.

All other states would provide the user
with incorrect data or result in the loss of
existing data.

6.1.2 Modeling failure states

In our test framework, the verification is
written as a bash script as well. This also
means that any assertions have to be made
explicit.

An example verification script for the se-
quence of events above could look something
like this:

if [ -f file1 ]; then

if [[ $(< file1) != "content"

&& $(< file1) != "updated" ]]

then

echo "invalid file contents"

exit 1

fi

fi

6.1.3 Dealing with reordering

As explained in the introduction, the oper-
ating system might buffer writes or perform
reordering of writes. This can cause our test
harness to miss possible failure states. In
the scope of this paper, we just accept this
and run each test case multiple times for the
same file system. If one would like to fur-
ther reduce the scope of analysis, the kernel
module can be adapted to circumvent the
write queue.

Another level of reordering can be intro-
duced by specific block device drivers and
hardware vendors but this cannot be ana-
lyzed using the approach chosen.

6.1.4 Check and repair

Some file systems (notably xfs and btrfs)
refuse to mount alltogether if they detect
a crash. In this case, we want to run
the respective tooling. When the mount
command in the verification step fails, it
calls a script called fsck which in turn
contains file system specific instructions on
how to repair a broken structure. We also
track the amount of times this was needed
in our test results. Modern init systems
like systemd provide their own utilities (e.g
systemd-mount) which run a file system
check on every mount to be on the safe side.
Due to an open issue in systemd 5, as of the
time of writing, this cannot be tested auto-
maticaly.

6.1.5 Report structure

In the current software development indus-
try landscape there is no real standard in
reporting testcases. The nearest standard
is found in JUnit XML which comes from
the java unit testing library with the same
name 6. Some languages provide tooling to
convert their own test reports to the JUnit
test format to be consumed by continous in-
tegration tools 7. It is also worth noting that
the XML schema itself is not part of junit
but Apache Ant. Most integrations do ex-
pect the junit specific fields to present which
is the reason why it is commonly refered to
as JUnit XML report.

For our usecase the XML format is not

5https://github.com/systemd/systemd/
issues/12493

6https://junit.org/junit5/
7https://github.com/jstemmer/

go-junit-report
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suitable as it does not allow more involved
failure analytics and statistics. Our test
harness outputs an SQL file in addition
to a SQLite database file. By providing
both the SQL instructions and the evalu-
ated database file, we allow for a simple
transition to other database system as well
as enable researchers to combine multiple
test results into a single database for larger
statistical analysis.

At first glance, SQLite does not look like
a suitable format to provide static reports
of test runs but closer inspection yields a
lot of benefits. The well established SQL
query language offers familiarity for appli-
cation developers and allows for explorative
queries into the past test results. Addition-
ally, tooling support for this format is preva-
lent in the data analysis space 8.

The chosen schema is structured as a se-
quence of events with additional informa-
tion for different kinds of events. A graph-
ical representation can be found in figure
??. To simplify queries, a view called
testresult is provided as well. This view
joins the events with their testruns and
groups by testcase and retry. The result is
a summary of the respective testcases and
their success rate.

1. Base events

Every event inherits the base event.
The base event type contains the name
of the testcase, a unique event ID and
the numer of operations replayed.

2. Testrun events
8These topics are also highlighted by the SQLite

developers themselves: https://www.sqlite.org/
appfileformat.html

Figure 4: Database Structure

A testrun event signifies the comple-
tion of a replay-and-verify cycle. In ad-
dition to the fields for the base event,
we also store the success of the test run.

3. fsck events

A fsck event is emited whenever a
manual fsck step had to be taken to
mount the file system. If the file system
check still left the device in a corrupted
state, the failure flag is set to true.

6.1.6 Implementation

As is the case in every software project, the
implementation of the test framework was
not without its own problems. The first
version of the test harness simply recorded
the results of a certain shell script and re-
played it while staticaly checking for con-
sistency of a hardcoded file. This approach
does not scale as every testcase has a differ-
ent way to validate. The next iteration split
the test scripts into two parts: XXX.test

and XXX.verify. While at first everything
seemed to work fine, a large portion of test-
cases failed because the verify script aborted
and the file system staid mounted across
test runs.

Bash offers a way to perform operations
on exit using a trap. After implementing
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a trap which performs unmount operations,
the first prototype of the test harness was
complete.

Since some file systems refuse to mount
in specific states, a mechanism to run a file
system repair operation has to be devised.
As up until this point, each testcase im-
plemented mounting and unmounting sep-
arately, this was also a good time to im-
plement a common boilerplate. This boiler-
plate is sourced by every testcase and per-
forms the following actions: set common
shell options, set up the exit trap as de-
scribed previously and mount the file sys-
tem. By extending this common base to run
a file system specific repair script on failed
mount, more testcases succeded.

Whether a repair operation has been per-
formed or not is an interresting datapoint,
so we need to communicate this back to the
test harness. Communicating via the stan-
dard input and output streams is not an
option since the test and verify scripts call
thrid party programs which might fill the
streams with garbage data. Another option
would have been setting up named pipes or
writing to predefined files but the simplest
and most integrated solution is to set the
exit code of the script depending on whether
the file system performed a repair operation.
This leads our test cases to exit with one of
four exit codes:

• 0: Successful without a file system re-
pair

• 42: Successful, file system was repaired

• 43: Testcase or file system repair failed

• other: Testcase failed without a file
system repair

Since errors can occur at every step of the
verification, we have to keep track of the re-
sult of the file system check. This compli-
cates error handling a bit but as everything
can be done in the base, which is sourced
by the testcases, the testcase developers do
not have to worry about this and simply exit
with a non-zero exit code for the test har-
ness to detect the correct type of failure.

6.2 Test methods

In the scope of this paper, we modeled a list
of testcases to represent various access pat-
terns occuring in regular use. We run each
testcase three times on every examined file
system. The file systems chosen, represent
different approaches to consistency.

6.2.1 Testcases

This section documents the test cases
implemented in our work. The source
code for these cases can be found in
the tests/testcases directory of the project
repository.

1. Partial Write (PW) This testcase de-
scribes the same procedure as taken
in section ??. A file spanning multi-
ple sectors is created. Consistency is
only reached if the file is present and
the contents are correct. As described
above, this consistency is not guaran-
teed by POSIX so low success rates are
to be expected.

2. Write and rename (WR) This testcase
is the source of the example shown in
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section ??. It tests the atomicity of re-
name operations.

3. Partial Overwrite (PO) This testcase
performes a write similar to the first
testcase but then overwrites sections of
the file afterwards. Consistent states
include the file with its original con-
tents or the new contents. A failure
occurs when the contents represent an
intermediate state.

4. Directory operations (DO) Here we
examine metadata updates. A direc-
tory tree is created and moved around.
The deepest level contains a file. The
failure state we’re looking for here is
missing directories and the consistency
of the file.

5. Sequential Consistency (SC)

This testcase checks the implemen-
tation for consistency on a temporal
scale. Two files are created in sequence.
If the second file becomes available be-
fore the first one, the state is considered
inconsistent.

6. Git Commit (GC)

Git offers distributed versioning of
source code and as such adds another
level of redundancy above the file sys-
tem. A common workflow is staging
a file and then commiting it. This
testcase examines the behaviour of git,
if a crash occurs during the commit.
An inconsistency occurs when the git

commit command fails or the updated
file does not contain the correct data.

6.3 Running the tests

With the testcases defined, the last step is
to actually run the tests. The flow of the
test cases is described in pseudocode below.

mkfs = record_mkfs()

for t in testcases:

# run each test case three times

for i in 1..3:

replay(mkfs)

test_record = record(t.test)

if t.prep?:

prep = record(t.prep)

# validate each write separately

for l in 1..(len(test_record)):

replay(mkfs)

replay(prep)

replay(test_record,l)

validate(t.validate)

Tests were performed on a Lenovo P52,
outfitted with an Intel Core i7-8850H

CPU and 32 Gigabytes of memory, running
the 5.15.13-200.fc35.x86_64 version of
the Linux kernel. The kernel is configured
with the default kernel parameters for Fe-
dora Linux 35. To accomodate the mini-
mum volume size of btrfs, the sitelen device
was created with a size of 256 Mebibyte.

6.4 Test results

The test results show a large variety of ac-
cess patterns across different file systems.
While some file systems performed barely
any writes at all, the XFS file system per-
formed the most writes of all by far.

Table ?? shows a very basic view on the
test results. In the case of this table, the test
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runs are not split by testcase or run which
can skew the results. Still it provides a gen-
eral perspective on the overall performance
of the respective file systems across work-
loads. Success Rate is calculated as number
of successful tests divided by the amount of
tests run in total. The column labeled Suc-
cessful FSCK describes the rate of success
when a manual file system check had to be
performed. A special value of n/a denotes
that no file system check had to be per-
formed, as the file system was always able to
be mounted without any errors. As an ex-
ample, xfs was unable to mount the file sys-
tem 75 times. Out of these, in 32 cases the
xfs_repair tool was able to reach a consis-
tent state. This results in a success rate of
32/75 ≃ 0.43. A detailed look at the test
results for the examined file systems can be
found in section ?? and onwards. As each
test case is run three times, this is separated
in the detailed test result tables as signified
by the Retry column.

Table 1: Summarized Test Results
FS Success Rate Successful FSCK
xfs 0.975 0.43
ext4 0.964 n/a
btrfs 0.962 0.00
fat32 0.438 n/a
ntfs 0.122 0.00

When confronted with the data, it seems
like the logical conlusion would be that file
system corruptions and data loss are a reg-
ular occurance. This is not the case, as
the failure states produced by our approach
are extraordinarily rare during regular use.
To validate this hypothsis, we used the
blktrace software and recored the number
of block device write events over 6 minutes.

During this time, the machine was used to
write this paper, listen to music, browse the
web and even perform some database oper-
ations. This resulted in a total number of
10811 write operations. Spread out across
the timespan, this amounts to 30 events per
second. On its own this still seems like a
lot of operations. However, write opera-
tions usually only take around 10 microsec-
onds9, so the probability of interrupting one
specific write operation is calculated to be
0.0003 which equals 0.03%. These num-
bers vary by workload and only serve to put
the failure rate into perspective. For more
conclusive results, a large scale benchmark
would have to be performed.

As briefly mentioned in the introduction,
for critical workloads, file systems should be
kept redundant. This can either be acom-
plished by abstracting a single file system
over the network or performing higher level
consistency analysis on an application layer,
as is the case with many database systems.

6.4.1 xfs

The XFS file system is the primary file sys-
tem in use by CentOS and Redhat Enter-
prise Linux. It is journal based and offers
many optimization features. For this work,
we only examined the default parameters.

Out of all the file systems tested, XFS
performed the most amount of write opera-
tions. This is due to the fact that by simply
mounting and unmounting the block device,
around 500 write operations are performed.
During initial testing, this caused a lot of is-
sues and falsified test results. When mount-

9This was calculated using the IOPS from Table
in section ??
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Table 2: XFS test results
Testcase Retry Success Rate
PW 0 0.97

1 0.96
2 0.99

WR 0 0.98
1 0.98
2 0.99

PO 0 1.0
1 0.99
2 1.0

DO 0 0.93
1 0.93
2 0.92

SC 0 1.0
1 1.0
2 1.0

GC 0 0.96
1 0.99
2 0.98

ing a block device and immediately writing
to it, the operations might get reordered by
the block layer, causing an early corruption
of the log which is irrecoverable. This also
occured for other file systems but due to the
sheer amount of writes, it only became ap-
parent through the inconsistent test results
of the XFS file system.

The performance of the xfs_repair util-
ity is also acceptable. It correctly brought
back the file system to a consistent state
42% of the time. This not only means that
the file system was able to be mounted. It
also signifies that the testcase was successful
after mounting. It is important to keep in
mind, that in our case, we always called the
tool with the same arguments, regardles of
file system corruption present. This means
that the performance of the tool might ex-
ceed the numbers stated here when applied
correctly.

6.4.2 ext4

Table 3: ext4 test results
Testcase Retry Success Rate
PW 0 0.64

1 0.55
2 0.48

WR 0 0.93
1 1.0
2 1.0

PO 0 1.0
1 0.98
2 0.92

DO 0 0.76
1 0.84
2 0.74

SC 0 1.0
1 1.0
2 1.0

GC 0 0.99
1 0.98
2 0.5

In our testruns, the journaling file system
ext4 came second when comparing by aver-
age of aggregated test runs. ext4 had above
95% success with 9 out of 18 performed
runs. As expected, the WR and SC test-
cases performed very well, as this subject
was a controversial topic 10 with the result
of supporting this model of consistency.

Potential areas for improvement have
been identified in the area of partial writes
as signified by the PW testcase.

The results for this file system show, that
it is well suited for end user workloads due
to its high success rate and low complexity.
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Table 4: btrfs test results
Testcase Retry Success Rate
PW 0 1.0

1 1.0
2 0.97

WR 0 0.92
1 0.81
2 0.89

PO 0 1.0
1 0.81
2 0.98

DO 0 0.99
1 0.99
2 1.0

SC 0 1.0
1 1.0
2 1.0

GC 0 1.0
1 1.0
2 1.0

6.4.3 btrfs

BTRFS is classified as a Copy-on-Write file
system. Since 2014 it is the default file sys-
tem for OpenSUSE and was recently also
introduced to be the default for desktop edi-
tions of Fedora. It is also in use by Facebook
due to its snapshotting capabilities 11.

In our testcases, it was only slightly out-
performed by xfs and ext4. It does how-
ever present a median success rate of 1

with its average being dragged down by the
WR testcase. It seems like btrfs chose per-
formance over consistency when handling
metadata updates.

When inspecting a common developer
workflow like git, btrfs performed extraordi-
narily well which shows a promising future

10https://lore.kernel.org/lkml/
1238742067-30814-1-git-send-email-tytso@
mit.edu/

11https://facebookmicrosites.github.io/
btrfs/docs/btrfs-facebook.html

for btrfs.

6.4.4 fat32

Table 5: fat32 test results
Testcase Retry Success Rate
PW 0 0.63

1 0.27
2 0.38

WR 0 1.0
1 0.85
2 1.0

PO 0 0.58
1 0.5
2 0.08

DO 0 0.68
1 0.48
2 0.55

SC 0 1.0
1 1.0
2 1.0

GC 0 0.06
1 0.0
2 0.0

Designed in 1977, the File Allocation Ta-
ble format is one of the oldest file systems.
It offers basically no consistency guaran-
tees and keeps metadata stored in a cen-
tral file allocation table. The only testcase
in which fat32 excelled was sequential con-
sistency. Otherwise, the test results var-
ied widely and no strong conclusion can be
drawn from these results alone.

6.4.5 NTFS

The New Technology File System is the de-
fault file system in use by Microsoft Win-
dows. It is a journaled file system and
as such offers modest consistency guaran-
tees. With it being the most prominent
file system in desktop use (where system
crashes and power outages are a frequent
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Table 6: ntfs test results
Testcase Retry Success Rate
PW 0 0.04

1 0.04
2 0.04

WR 0 0.06
1 0.04
2 0.04

PO 0 0.03
1 0.03
2 0.08

DO 0 0.08
1 0.58
2 0.48

SC 0 0.04
1 0.04
2 0.04

GC 0 0.08
1 0.08
2 0.08

occurance), the overall success rate of 0.122
seems very concerning at first glance. It
can be explained by the simple fact that
we used the Linux implementation of the
file system which is of course different from
the Windows implementation. This dras-
tically worsens results and also prohibits a
effective file system repair operation. The
fsck.ntfs program instructs the user to
mount the file system in windows and run a
windows specific tool to repair the file sys-
tem. This also shows in the success rate
of file system repair operations where not a
single one resulted in a success.

7 Future research

The goal of this paper is to aid researchers
in examining file system implementations.
The analysis performed in this paper is only
scratching the surface in that regard. Fu-

ture research topics include the extension
of the system for other architectures (NT,
BSD) as well as analyzing more file sys-
tems. During testing, we only examined the
default file system parameters. Future re-
search can be devoted to inspecting the ef-
fects of various tuning options on file system
consistency.

Improvements can also be made to the
way corrupted file systems are handled in
our test harness. Currently, a one-fits-all
forceful fsck approach is taken. It is triv-
ial to see that this will not always produce
the best possible results for various file sys-
tems. The current test harness also disre-
gards the possibility of running a file system
repair operation when the operating system
performed a successful mount.

Another major tradeoff taken in this pa-
per is the realization of the test framework
as scripts. The tools called by these scripts
embed a high degree of complexity and are
points of failure themselves. By rewriting
the testsuite in a programming language
closer to the system layer, writing opera-
tions could be more granular. This in turn
enables more complex test cases without in-
cluding the noise and failure potential of
third party tools. To gain this level of con-
trol, a new set of APIs must be made avail-
able from the kernel module. At least a way
to reset the kernel module state has to be
implemented.

During development of the testing frame-
work, an interresting failure state was dis-
covered which occurs when directly writing
to the file system after it has been mounted.
If data is written in quick succession to the
mount operation, the block layer might re-
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order the writes and corrupt the log in the
event of a crash. In this work, we worked
around the issue by idling for a certain
amount of time before writing.

While this paper focuses on specific exist-
ing implementations, a formal model of file
systems can allow their consistency to be
proven by model checkers. Insight gained
here can also aid in the specificaton of con-
sistency models during file system develop-
ment.

8 Conclusion

The unexpected crash or power loss of op-
erating systems is a real threat to data con-
sinstency. The sitelen tool presented in
this work is able to record and replay op-
erations as they would be performed on a
real device. Through designing and imple-
mentation of an automated test suite, we
examined popular file system implementa-
tions from a standpoint of consistency af-
ter crash recovery. Notably XFS and ext4
performed extraordinary well for typical end
user usage patterns. As expected, simpler
file systems like fat16 performed consider-
ably worse. The high complexity of BTRFS
also caused a lot of testcases to fail.

Even though, many popular file sys-
tems exhibit non-optimal success rates, one
should not come to the conclusion that a
power loss always results in a corrupted file
system. To reach these failure states, very
precise timing is be needed.

The report format proposed can offer file
system developers a way to exchange state
information which leads to more concise bug
reports and easier reproducability.

Source code and raw test results are avail-
able at git.sr.ht/~thesuess/sitelen.
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